
SIP Server Load Balancing Based on SDN

Ahmadreza Montazerolghaem

Department of Computer Engineering,

Quchan University of Technology,

Quchan, Khorasan Razavi, Iran

Ar.montazer@qiet.ac.ir

Abstract— Session Initiation Protocol (SIP) grows for VoIP applications, and faces challenges including

security and overload. On the other hand, the new concept of Software-defined Networking (SDN) has made

great changes in the networked world. SDN is the idea of separating the control plane from the network

infrastructure that can bring several benefits. We used this idea to provide a new architecture for SIP

networks. Moreover, for the load distribution challenge in these networks, a framework based on SDN was

offered, in which the load balancing and network management can be easily done by a central controller

considering the network status. Unlike the traditional methods, in this framework, there is no need to change

the infrastructures like SIP servers or SIP load balancer to implement the distribution method. Also, several

types of load distribution algorithms can be performed as software in the controller. We were able to achieve

the desired results through simulating the three methods based on the proposed framework in Mininet.

Keywords—SIP networks; Load Balancing; SDN; Central Controller

I. INTRODUCTION

Session Initiation Protocol (SIP) [1] is a signaling protocol to handle a variety of applications, including
Voice over IP (VoIP) and Instant Messaging (IM) [2] for calls establishment and termination. Two important
components in this protocol are SIP user agents and servers. In SIP, call requests from user agents are sent to
the servers. Since SIP server capacity is limited, the large number of the SIP user agents could possibility
cause the servers overload. One way to deal with this phenomenon is the distribution of the user requests
among the servers. Therefore, as Figure 1 illustrates, a load balancer among the user agents and servers is
required. The load balancer must be informed about the available capacity of each server as a real time and
determines the best server to service the request on its basis. A network of switches is responsible for sending
the requests to the load balancer. Figure 1 shows that, there is a possibility of the bottleneck in the load
balancer because all the requests pass through it. Given the challenge, we present a new framework for SIP
networks to distribute the load.

The rest of this article is as follows: In Section II, we have a quick overview of the previous literature. In
Section III, we introduce SDN network. The proposed framework is presented in Section IV and in Section
V, we evaluate its performance. The conclusion of this article is done in section VI.

SIP Server 1

Switches

Load

Balancer

User Agent 1

User Agent n SIP Server m

SIP Server Cluster

Fig. 1. Traditional architecture of load distribution in SIP

II. RELATED WORKS

In [3], a load balancing for SIP is provided. In this paper, based on the recipient of the call, requests are
routed to servers. To allocate calls to the servers, a hash function is used. A key problem in this approach is
that fairness is difficult. Also, this approach does not adapt well to the call changes. Article [3] explains the
high availability and proposes how to fix the failures.

A number of commercial products support SIP load balancing and one of them is "Nortel Networks’
Layer 2–7 Gigabit Ethernet Switch Module for IBM Blade Center" [4]. Basic information of this product is
available, but what the load-balancing algorithm uses is not clear.

Considerable research has been done in the field of load balancing for HTTP requests [5]. One of the most
original articles in the field describes the scaling manner of NCSA's website using DNS [6]. In [7], the
advantages of using an explicit load balancing of round robin DNS is shown. Load balancer in that article is
not informed about the request content because the content does not examine any request. In papers [8], [9]
and [10], a load balancer with the knowledge of the content is discussed. Such a balancing reviews the
request itself to decide on the route. In [11] and [12], the load balancing in the websites having high access
rate in reality has been addressed. In [13] and [14], client-side algorithms for assign the requests to a server
have been provided. In [15], a load balancing for cluster of web servers is presented based on the requests
size. Least work left and joining the shortest queue to assign the tasks to the servers are also provided in [16]
and [17] and [18]. However, these articles do not show how a load balancer can estimate the least work left
for a SIP server as reliable mechanism.

The architecture of all the articles in this field is in accordance with Figure 1. This means that to distribute
the load between the servers in SIP, an entity called the load balancer is always used. The difference between
the various articles is in the work of this entity and its algorithm. In this article, inspired by the concept of
SDN, a new framework for the distribution of the load between the SIP servers is offered. To our knowledge,
this is the first research on SIP overload control through SDN approach.

III. SOFTWARE DEFINED NETWORK TECHNOLOGY

SDN is new network architecture [19]. Figure 2 shows the basic structure of SDN. As can be seen in
Figure 2, the whole network is made of two main parts: the control plane and the data plane.

D
a

ta

P
la

n
e

C
o

n
tr

o
l

P
la

n
e

Fig. 2. SDN Architecture

All controls are on the control plane and it is in fact the brain of the SDN. The control plane makes
possible the network management for the user software in the application layer. The main policies can be
made in the control plane. In the data plane, there are the main hardware and software elements, such as
switches, routers and firewalls which act like a traditional network. The connections between these elements
are through common media such as fiber optic or copper cable and each of which has its own performance.
One of the advantages of SDN is that the switches and routers are not tied to a physical location or a
particular brand. The connections between the different layers in SDN architecture are established through
open and standard interfaces (including OpenFlow) [20-22]. Thus, there are two main components in an
architectural SDN:

 Forwarding elements (SDN switches)

 SDN controllers

A forwarding device is a hardware or software that is specifically charged with the task of forwarding the
packages based on the flow table. The flow table contains rule, action and counter. The controller like a
network operating system controls the forwarding devices and facilitates the automated management of the
networks. In other words, the rules that the switches must follow are provided by the controller. These rules
depend on the policies of the application software in the application layer. The action field determines the
behavior of the switches with the packets matched with the rule specified. The counter is also used for
counting these packets [23-25].

Network management, economic efficiency and adaptability are the architectural features of SDN. SDN
also makes possible the configuration of the network devices from a central point and automatically through
the software. In this way, the entire network can be programmatically and dynamically configured based on
the network status [21].

IV. SIP SERVER LOAD BALANCING BASED ON SDN

In this section, we first introduce the proposed architecture for SIP networks. This architecture is shown in
Figure 3. As it is clear in this figure, by replacing the traditional switches of the network with SDN switches,
its advantages can be used in SIP networks. In other words, through the central management of SDN
switches by a controller, the policies (such as policies of "routing", "traffic engineering" and "security") can
be performed without changing the network infrastructure (such as SIP servers and user equipment).
Previously, it was necessary to change the network infrastructure devices to implement each of these policies
in SIP network. For example, to apply an overload control policy, the configuration of each of the SIP servers
should have been changed and made the management and maintenance of the network difficult and made the
network inflexible. Using the proposed architecture in the present article, the network policies can be easily
implemented on the central controller as software and installed on the switches as rules using the OpenFlow
instructions. Therefore, all SIP network controls are done without changing the servers in the controller.

SIP Server 1

SDN Switches

User Agent 1

User Agent n SIP Server m

SIP Server Cluster

SDN Controller

Fig. 3. Proposed Architecture

This architecture is applicable for all the challenges in SIP network (such as security, overload, load
distribution, etc.) but to prepare the preparations for the development of this architecture in the future, the rest
of this article will be allocated to the load distribution challenges. Figure 4 shows the proposed framework
for SIP load balancing according to Figure 3. The proposed controller in this context includes the following
components:

 SDN applications (e.g., load balancing): It includes load distribution algorithm. The input is the
information regarding network manager and server manager.

 Network manager: It provides a global view of network topology.

 Server manager: It monitors the server loads using the counter field in the flow table switches.

 Flow manager: It manages and routs the flows toward the best server by setting the appropriate rules
according to the load balancing application.

Network of

OpenFlow Switchs
Call

 Requests

OpenFlow Controller

Flow Manager

Network Manager Server Manager

User Agents
SIP Servers

SDN Applications (e.g., Load Balancing)

South-Bound Open APIs (e.g., OpenFlow)

North-Bound Open APIs

Fig. 4. Proposed framework for load distribution

In the following, three methods for used in the load balancing applications are explained, and then in
section V, the proposed framework is evaluated using these three methods.

The first method - Random: A server is chosen randomly and a new request is sent to the server.

The second method - Round robin: The servers are attributed to the requests with no priority and only
through their rotation.

The third method - Least request: The new request is sent to the server with the least load. To identify the
server with the lowest load, the counter field can be used.

V. SIMULATION AND PERFORMANCE EVALUATION

Mininet emulator was used to simulate the proposed framework in Linux. The studied topology in Mininet
is shown in Figure 5. This topology includes a floodlight controller, a switch, three servers with specific IP

address (Host) and n user agents (Host). Moreover, the experiments have been done on an Inspiron1525
DELL laptop with an Intel Core 2 Duo CPU and a 3 GB RAM, a 32-bit Windows seven operating system
and Oracle VirtualBox as virtual machine.

SDN Controller

SDN

Switches

User Agents SIP Servers

Host1

2Host

3Host

Host1

Host n

192.168.10.1

192.168.10.2

192.168.10.3

192.168.10.4

Fig. 5. Test topology in Mininet

According to Table I, three scenarios have been designed to evaluate the proposed framework. This table
shows the number of the background requests in each server per scenario. In addition, 200 requests have been
created by the user agents for about 50 seconds.

TABLE I. NUMBER OF BACKGROUND REQUESTS

 Server 1 Server 2 Server 3

Scenario 1 50 50 50

Scenario 2 100 50 25

Scenario 3 200 50 0

Two criteria have been used for the assessment: "average response time" and "throughput". Average
response time is the time between sending a request and receiving a response. Throughput is the number of
the responded requests in the time unit.

Figures 6, 8 and 10 show the average response time and Figures 7, 9 and 11 show the throughput of the
methods in the three scenarios. As you can see, the Least Request method has a less average response time
and a greater throughput than the other two methods. However, in Scenario 1, the three methods are close to
each other with equal number of background requests. In Scenarios 2 and 3 because of an unequal number of
the background requests, more differences in the methods can be observed. For example, in Scenario 3, since
the background load of Server 1 is greater than the two other servers, the new request should not be sent to
Server 1. This is while the Random and Round robin methods do not consider such an important point. In this
scenario, the Least Request method chooses Server 3 for the new requests.

0 5 10 15 20 25 30 35 40 45 50
2.5

3

3.5

4

4.5

5

5.5

6

6.5

7

Time (Second)

A
v
e
ra

g
e
 r

e
s
p
o
n
s
e
 t

im
e
 (

M
ill

is
e
c
o
n
d
)

Random

Round-robin

Least Request

Fig. 6. Average response time in Scenario 1

5 10 15 20 25 30 35 40 45 50
0

50

100

150

200

Time (Second)

T
h
ro

u
g
h
p
u
t

(R
e
q
u
e
s
t/

S
e
c
o
n
d
)

Least Request Round-robin Random

Fig. 7. Throughput in Scenario 1

0 5 10 15 20 25 30 35 40 45 50
4

5

6

7

8

9

10

11

12

Time (Second)

A
v
e
ra

g
e
 r

e
s
p
o
n
s
e
 t

im
e
 (

M
ill

is
e
c
o
n
d
)

Random

Round-robin

Least Request

Fig. 8. Average response time in Scenario 2

5 10 15 20 25 30 35 40 45 50
0

50

100

150

200

Time (Second)

T
h
ro

u
g
h
p
u
t

(R
e
q
u
e
s
t/

S
e
c
o
n
d
)

Least Request Round-robin Random

Fig. 9. Throughput in Scenario 2

0 5 10 15 20 25 30 35 40 45 50
4

6

8

10

12

14

16

Time (Second)

A
v
e
ra

g
e
 r

e
s
p
o
n
s
e
 t

im
e
 (

M
ill

is
e
c
o
n
d
)

Random

Round-robin

Least Request

Fig. 10. Average response time in Scenario 3

5 10 15 20 25 30 35 40 45 50
0

50

100

150

200

Time (Second)

T
h
ro

u
g
h
p
u
t

(R
e
q
u
e
s
t/

S
e
c
o
n
d
)

Least Request Round-robin Random

Fig. 11. Throughput in Scenario 3

In Figures 12 and 13, the effect of the increase of n (user agents) is shown. As expected, by increasing n,
the number of the requests increases and therefore the average response time increases while the throughput
decreases. But these changes are less in the Least Request method. This means that this method is able to take
advantage of the information of the switches to have a proper load distribution.

10 20 30 40 50 60 70 80 90 100
0

5

10

15

20

25

30

35

40

45

50

n (number of Host)

A
v
e
ra

g
e
 r

e
s
p
o
n
s
e
 t

im
e
 (

M
ill

is
e
c
o
n
d
)

Least Request

Round-robin

Random

Fig. 12. Average response time by increasing n

10 20 30 40 50 60 70 80 90 100
0

50

100

150

200

n (number of Host)

T
h
ro

u
g
h
p
u
t

(R
e
q
u
e
s
t/

S
e
c
o
n
d
)

Random Round-robin Least Request

Fig. 13. Throughput by increasing n

VI. CONCLUSIONS AND FUTURE WORK

SIP networks has challenges, including security, and overload which are continuously researched. On the
other hand, the concept of SDN has recently made great changes in the network. SDN is the idea of
separating the control plane from the data plane which has many benefits. We have used this idea to provide
a new architecture for SIP networks. We have also provided a framework based on SDN for the challenge of
SIP load balancing in the network. The important point is that in the traditional methods, the load balancer
could only use one algorithm while in our proposed framework, the load distribution method can be changed
regarding the network status and the network management can be done from a central point. Based on the
proposed framework, several types of load distribution algorithms can be performed as software in the
controller without changing the network infrastructure and their effects can be investigated. In other words,
researchers in the field of SIP load distribution can code the algorithms in the controller without changing the
data plane. We have achieved the desired results through simulating the three methods based on the proposed

framework. However, the practical implementation of this framework may be challenging and will be the
focus of our future work.

REFERENCE

[1] Rosenberg, Jonathan, et al. “SIP: session initiation protocol”. Vol. 23. RFC 3261, Internet Engineering Task Force, 2002.

[2] J. Rosenberg, “A Presence Event Package for the Session Initiation Protocol (SIP),” in RFC 3856, ed, August 2004.

[3] K. Singh and H. Schulzrinne, “Failover and load sharing in SIP telephony,” in Proc. SPECTS, Jul. 2005, pp. 927–942.

[4] IBM, “Application switching with Nortel Networks Layer 2–7 Gigabit Ethernet switch module for IBM BladeCenter,” 2006
[Online]. Available: http://www.redbooks.ibm.com/abstracts/redp3589.html?Open

[5] V. Cardellini, E. Casalicchio, M. Colajanni, and P. S. Yu, “The state of the art in locally distributed Web-server systems,”
Comput. Surveys, vol. 34, no. 2, pp. 263–311, Jun. 2002.

[6] T.T.Kwan,R.E.McGrath,andD.A.Reed,“NCSA’sWorldWideWeb server: Design and performance,” Computer, vol. 28, no.
11, pp. 68–74, Nov. 1995.

[7] D. Dias, W. Kish, R. Mukherjee, and R. Tewari, “A scalable and highly available Web server,” in Proc. IEEE Compcon, Feb.
1996, pp. 85–92.

[8] M. Aron, P. Druschel, and W. Zwaenepoel, “Efficient support for P-HTTP in cluster-based Web servers,” in Proc. USENIX
Annu. Tech. Conf., Monterey, CA, Jun. 1999, pp. 185–198.

[9] M. Aron, D. Sanders, P. Druschel, and W. Zwaenepoel, “Scalable content-aware request distribution in cluster-based network
servers,” in Proc. USENIX Annu. Tech. Conf., San Diego, CA, Jun. 2000, pp. 323–336.

[10] V. S. Pai, M. Aron, G. Banga, M. Svendsen, P. Druschel, W. Zwaenepoel, and E. M. Nahum, “Locality-aware request
distribution in cluster-based network servers,” in Proc. Archit. Support Program. Lang. Oper. Syst., 1998, pp. 205–216.

[11] J. Challenger, P. Dantzig, and A. Iyengar, “A scalable and highly available systemfor serving dynamic data at frequently
accessed Web sites,” in Proc. ACM/IEEE Conf. Supercomput., Nov. 1998, pp. 1–30.

[12] A. Iyengar, J. Challenger, D. Dias, and P. Dantzig, “High-performance Web site design techniques,” IEEE Internet Comput.,
vol. 4, no. 2, pp. 17–26, Mar./Apr. 2000.

[13] Z. Fei, S. Bhattacharjee, E. Zegura, and M. Ammar, “A novel server selection technique for improving the response time of a
replicated service,” in Proc. IEEE INFOCOM, 1998, vol. 2, pp. 783–791.

[14] D. Mosedale, W. Foss, and R. McCool, “Lessons learned administering Netscape’s Internet site,” IEEE Internet Comput.,
vol. 1, no. 2, pp. 28–35, Mar./Apr. 1997.

[15] G. Ciardo, A. Riska, and E. Smirni, “EQUILOAD: A load balancing policy for clustered Web servers,” Perform. Eval., vol.
46, no. 2-3, pp. 101–124, 2001.

[16] M. Harchol-Balter, M. Crovella, and C. D. Murta, “On choosing a task assignment policy for a distributed server system,” J.
Parallel Distrib. Comput., vol. 59, no. 2, pp. 204–228, 1999.

[17] B. Schroeder and M. Harchol-Balter, “Evaluation of task assignment policies for supercomputing servers: The case for load
unbalancing and fairness,” Cluster Comput., vol. 7, no. 2, pp. 151–161, 2004.

[18] Hongbo Jiang, Arun Iyengar, Erich Nahum, Wolfgang Segmuller, Asser N. Tantawi, and Charles P. Wright. 2012. “Design,
implementation, and performance of a load balancer for SIP server clusters”.IEEE/ACM Trans. Netw. 20, 4 (August 2012),
1190-1202.

[19] McKeown, Nick. “Software-defined networking.” INFOCOM keynote talk 17.2 (2009): 30-32.

[20] Kirkpatrick, Keith. “Software-defined networking.” Communications of the ACM 56.9 (2013): 16-19.

[21] Kim, Hyojoon, and Nick Feamster. “Improving network management with software defined networking.” Communications
Magazine, IEEE 51.2 (2013): 114-119.

[22] Nunes, Bruno AA, et al. “A survey of software-defined networking: Past, present, and future of programmable
networks.” Communications Surveys & Tutorials, IEEE 16.3 (2014): 1617-1634.

[23] Jafarian, Jafar Haadi, Ehab Al-Shaer, and Qi Duan. “Openflow random host mutation: transparent moving target defense
using software defined networking.” Proceedings of the first workshop on Hot topics in software defined networks. ACM,
2012.

[24] McKeown, Nick, et al. “OpenFlow: enabling innovation in campus networks.”ACM SIGCOMM Computer Communication
Review 38.2 (2008): 69-74.

[25] Wang, Richard, Dana Butnariu, and Jennifer Rexford. “OpenFlow-Based Server Load Balancing Gone Wild.” Hot-ICE 11
(2011): 12-12.

